

EZ3004 Chloride Analyser

Product #: EZ3004.XXXXXXXX

AED Price: Contact Hach

Online ion-selective Chloride measurements in industrial and environmental applications

ISE technology for optimal analytical performance

With limited maintenance requirements and reduced reagent consumption, the EZ3000 Series are the ideal choice for a wide range of water monitoring applications where ion-selective electrodes are the preferred analytical technique. Outstanding precision and stability is guaranteed by the temperature controlled measurement.

Direct, discontinuous ISE method

Contrary to separate electrodes or other analysers in the market, the EZ3000 Series does not run a continuous measurement. The principle of discontinuous ISE analysis not only enhances control over conversion of ion activity to electric potential, it also eliminates risk of cross-contamination between cycles and reduces overall consumption of reagents.

The EZ3000 Series combine unique ISE technology with a set of analysis, control and communication features in an industrial analyser mainframe with designed for the highest performance:

- Automatic direct ion-selective measurements
- Smart automatic features
- Control and communication via industrial panel PC
- Standard 4 20 mA signal output with alarm processing
- Communication ports supporting connectivity to Modbus
- Multiple stream analysis
- Reduced reagent consumption

There are many additional options available. Please contact Hach for more details.

Specifications

Alarm: 1x malfunctioning, 4x user-configurable, max. 24 VDC/0.5 A, potential free contacts

Ambient temperature: 10 - 30 °C ±4 °C deviation at 5 - 95% relative humidity (non-condensing)

Analogue outputs: Active 4 - 20 mA max. 500 Ohm load, standard 1, max. 8 (option)

Automatic cleaning: Yes

Calibration: Automatic, 2-point; frequency freely programmable

Certifications: CE compliant / UL certified

Cycle Time: 5 minutes

Demineralised water: For rinsing

Detection limit: 2.5 mg/L

Digital outputs: Optional: Modbus (TCP/IP, RS485)

Dimensions (H x W x D): 690 mm x 465 mm x 330 mm

Drain: Atmospheric pressure, vented, min. Ø 32 mm

Earth connection: Dry and clean earth pole with low impedance (< 1 Ohm) using an earth cable of > 2.5 mm²

Flow rate: 100 - 300 mL/min

Instrument air: Dry and oil free according to ISA-S7.0.01-1996 quality standard for instrument air

Interferences: Bromide, sulphide, iodide, cyanide ions may interfere. Mercury must be absent. Ammonia and

thiosulphate may interfere. Fats, oil, proteins, surfactants and tar.

Material: Hinged part: Thermoform ABS, door: PMMA

Wall section: Galvanised steel, powder coated

Measurement method: Discontinuous, direct measurement by combined ion-selective electrode, conform with standard

methods EPA 9212 and ASTM D512-12

Measuring range: 10 - 100 mg/L Cl

Optional:

2.5 - 25 mg/L Cl

5 - 50 mg/L Cl⁻

Method: Ionselective
Model: EZ3004
Number of sample streams: 1, 2, 4 or 8

Parameter: Chloride

Power: 100 - 240 VAC, 50/60 Hz

Max. power consumption: 120 VA

Power supply: 100 - 240 VAC, 50/60 Hz

Precision: Better than 2% full scale range for standard test solutions

Protection class: Protection class: Analyser cabinet: IP44 / Panel PC: IP65

Reagent Requirements: Keep between 10 - 30 °C
Sample pressure: By external overflow vessel

Sample quality: Maximum particle size 100 μm, < 0.1 g/L; Turbidity < 50 NTU

Sample temperature: 10 - 30 °C

Validation: Automatic; frequency freely programmable

Warranty: 24 months
Weight: 25 kg

What's included?: EZ3004 Chloride Analyser, Instruction Manual, 1 x Double Bit Door Key, 1 x Mounting Brackets,

 $1\ x\ ISE\ Chloride\ Electrode\ and\ 1\ x\ empty\ 2.5L\ Reagent\ Container\ with\ Fittings\ (for\ Buffer\ Proposition 1)$

Solution)

What's included?

EZ3004 Chloride Analyser, Instruction Manual, 1 x Double Bit Door Key, 1 x Mounting Brackets, 1 x ISE Chloride Electrode and 1 x empty 2.5L Reagent Container with Fittings (for Buffer Solution)			